Model for Sintering Devitrifying Glass Particles with Embedded Rigid Fibers

نویسندگان

  • M. J. Pascual
  • A. Durán
  • M. O. Prado
  • E. D. Zanotto
چکیده

We extend the Clusters model to account for the presence of rigid inclusions and use it to analyze the experimental sintering kinetics of composites of 60SiO2 . 24B2O3 . 16Na2O glass particles and zirconia fibers. We followed the densification kinetics of such composites as a function of the particle size, volume fraction of fibers, fiber to pore size ratio, temperature, and time of thermal treatment. The parameters of the extended Clusters model are the glass particle size distribution and shape factor, the fiber volume fraction and radii, the glass viscosity and surface tension, the number of nucleating sites per unit surface, and the crystal growth rate in the parent glass. Hydrostatic tensions caused by the fibers were also included in the calculations. The modified Clusters model with only one adjustable parameter, which is largely dominated by viscosity but also includes particle shape, allowed us to account for the effect of surface crystallization and fiber content as inhibitors of densification and successfully describe the sintering kinetics of the studied composites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model for sintering polydispersed glass particles

We propose a model to describe the sintering kinetics of polydispersed glass particles, having no adjustable parameter. The model is based on three sintering stages: a pure `Frenkel' (F) ®rst step, a mixed `Frenkel/Mackenzie± Shuttleworth' stage, and a third, pure `Mackenzie±Shuttleworth' (MS) step. The model considers sample shrinkage as the sum of the partial shrinkage of several clusters, ea...

متن کامل

A Numerical Method for the Determination of an Effective Modules for Coated Glass Fibers Used in Phenolic Composites

It is well known that the mechanical properties of fiberglass reinforced "phenolic moulding compounds" are significantly enhanced if the glass particles are coated with silane coupling agents before compounding. It has been shown that improvements obtained by using scanning electron microscopy techniques are due to better bonding of phenolic resin to the surface of treated glass fibers. These o...

متن کامل

An investigation on Mechanical Properties of Apatite-Wollastonite-Diopside Glass-Ceramics Composites

Apatite-wollastonite (A-W)-phlogopite glass-ceramic is considered to be difficult to resorb, but often, it has been incorporated in particulate form to create new bioactive composites for potential maxillofacial applications. With various compositions, the present work has attempted to prepare apatite-wollastonite (A-W)-phlogopite glass ceramic composites, by applying sintering. Here, three-poi...

متن کامل

Compressibility and Foaming behavior of steel slag/waste glass compositesby particle size distribution and foam agents

In present research, the foam glass-ceramic composites fabricated by window glass, steel slag and SiC, CaCO3 foaming agents were investigated by press–sintering method. The optimum sintering temperature was obtained at 1200°C with a 3-minutes holding time and 20°C/min heating rate. The optimum pressure level of 80 MPa for achieving the 70 % of relative density was selected. The effec...

متن کامل

The effect of powder sintering on the palladium-catalyzed formation of carbon nanofibers from ethylene–oxygen mixtures

Carbon nanofiber growth on palladium particles from ethylene–oxygen mixtures was investigated with respect to thermal history. Electron microscopy, combined with focused ion beam cross-sectioning show particles sinter quickly, but can be stabilized by the addition of a short carbon deposition step at a temperature below the general reaction temperature. This step generates a thin layer of carbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005